skip to main content


Search for: All records

Creators/Authors contains: "Denis, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Abstract

    Measurement of the largest angular scale (< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 << 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of125(130)μKarcmin. We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 << 125 with the first bin showingD< 0.023μKCMB2at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.

     
    more » « less
  3. Abstract

    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) ofEEandBB(VV) power at= 20 and ∼35% (47%) at= 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of110μKarcminand correlated noise component rising at low-as−2.4. The transfer-function-corrected low-component is comparable to the white noise at the angular knee frequencies of≈ 18 (linear polarization) and≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matterEEpower spectra. Bias fromE-to-Bleakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for anr= 0.01BBpower spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.

     
    more » « less
  4. Discher, Dennis (Ed.)
    The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a structure consisting of nesprin, SUN, and lamin proteins. A principal function of the LINC complex is anchoring the nucleus to the actin, microtubule, and intermediate filament cytoskeletons. The LINC complex is present in nearly all cell types, including endothelial cells. Endothelial cells line the innermost surfaces of blood vessels and are critical for blood vessel barrier function. In addition, endothelial cells have specialized functions, including adaptation to the mechanical forces of blood flow. Previous studies have shown that depletion of individual nesprin isoforms results in impaired endothelial cell function. To further investigate the role of the LINC complex in endothelial cells we utilized dominant negative KASH (DN-KASH), a dominant negative protein that displaces endogenous nesprins from the nuclear envelope and disrupts nuclear–cytoskeletal connections. Endothelial cells expressing DN-KASH had altered cell–cell adhesion and barrier function, as well as altered cell–matrix adhesion and focal adhesion dynamics. In addition, cells expressing DN-KASH failed to properly adapt to shear stress or cyclic stretch. DN-KASH–expressing cells exhibited impaired collective cell migration in wound healing and angiogenesis assays. Our results demonstrate the importance of an intact LINC complex in endothelial cell function and homeostasis. 
    more » « less
  5. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 aW√ s across all four wafers about the CLASS signal band, which is below the expected photon NEP of 32 aW√ s from the field. We therefore expect the new detectors to be photon noise limited. 
    more » « less
  6. Abstract The current and future cosmic microwave background (CMB) experiments fielding kilopixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current I and the applied bias current I b . The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage ( I – V ) measurements acquired daily prior to CMB observations. By binning Q -band (40 GHz) I – V measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this I – V bin detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between the detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that, for the CLASS Q -band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to the raw TES data and is not subject to I – V data quality or processing errors. 
    more » « less
  7. Abstract

    The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲θ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASSQ-band (40 GHz),W-band (90 GHz), and dichroicG-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71μKcmbsfor the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.

     
    more » « less
  8. Abstract

    Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 ± 2.8 K and 355.6 ± 1.3 K in theQandWfrequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO2-dominant atmospheric model that includes trace amounts of additional absorbers like SO2and H2SO4.

     
    more » « less